Depth dependent dynamics in the hydration shell of a protein.

نویسندگان

  • J Servantie
  • C Atilgan
  • A R Atilgan
چکیده

We study the dynamics of hydration water/protein association in folded proteins using lysozyme and myoglobin as examples. Extensive molecular dynamics simulations are performed to identify underlying mechanisms of the dynamical transition that corresponds to the onset of amplified atomic fluctuations in proteins. The results indicate that the number of water molecules within a cutoff distance of each residue scales linearly with protein depth index and is not affected by the local dynamics of the backbone. Keeping track of the water molecules within the cutoff sphere, we observe an effective residence time, scaling inversely with depth index at physiological temperatures while the diffusive escape is highly reduced below the transition. A depth independent orientational memory loss is obtained for the average dipole vector of the water molecules within the sphere when the protein is functional. While below the transition temperature, the solvent is in a glassy state, acting as a solid crust around the protein, inhibiting any large scale conformational fluctuations. At the transition, most of the hydration shell unfreezes and water molecules collectively make the protein more flexible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation

Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulat...

متن کامل

Does the dynamic Stokes shift report on slow protein hydration dynamics?

The time-dependent fluorescence frequency shift of protein-attached probes has a much slower decay than that for the free probe. The decay times, ranging from 10 ps to several nanoseconds, have been attributed to hydration water motions several orders of magnitude slower than those in the hydration shell of small solutes. This interpretation deviates strongly from the prevailing picture of prot...

متن کامل

Dynamics and mechanism of ultrafast water-protein interactions.

Protein hydration is essential to its structure, dynamics, and function, but water-protein interactions have not been directly observed in real time at physiological temperature to our awareness. By using a tryptophan scan with femtosecond spectroscopy, we simultaneously measured the hydration water dynamics and protein side-chain motions with temperature dependence. We observed the heterogeneo...

متن کامل

Dynamic Behavior of Anisotropic Protein Microtubules Immersed in Cytosol Via Cooper–Naghdi Thick Shell Theory

In the present research, vibrational behavior of anisotropic protein microtubules (MTs) immersed in cytosol via Cooper–Naghdi shell model is investigated. MTs are hollow cylindrical structures in the eukaryotic cytoskeleton which surrounded by filament network. The temperature effect on vibration frequency is also taken into account by assuming temperature-dependent material properties for MTs....

متن کامل

Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.

The experimental determination of protein compressibility reflects both the protein intrinsic compressibility and the difference between the compressibility of water in the protein hydration shell and bulk water. We use molecular dynamics simulations to explore the dependence of the isothermal compressibility of the hydration shell surrounding globular proteins on differential contributions fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 133 8  شماره 

صفحات  -

تاریخ انتشار 2010